

# Peroxidase Isoenzyme Profiles as Indicators of Sensitivity in SO<sub>2</sub>-fumigated Crop Plants

## Aprajita Chauhan

Department of Chemistry, Sri Aurobindo College, University of Delhi, Malviya Nagar, New Delhi, India

### ABSTRACT

A study was made on the isoenzyme patterns of the anti-oxidative enzyme peroxidase in three crop species viz., *Solanum esculentum* (tomato), *Vigna radiata* (mung bean) and *Zea mays* (maize) exposed to low levels of SO<sub>2</sub>. Exposure to the phytotoxicant gas resulted in alteration in isozyme profiles. The intensity and number of Peroxidase (POD) bands increased in *S. esculentum* and *V. radiata*. Changes in isoperoxide zymograms are indicative of enhanced peroxidation processs in response to pollutant-stress. This method also underlines the value of Polyacrylamide Gel Electrophoresis (PAGE) in sensitivity screening of degrees of SO<sub>2</sub>- tolerance, prior to the manifestation of visible injury symptoms.

Keywords: Mung bean, tomato, maize, electrophoresis, peroxidases, isozyme profiles, SO<sub>2</sub>-tolerance

### I. INTRODUCTION

SO<sub>2</sub> is a major phytotoxicant and is known to induce a variety of detrimental physiological and biochemical changes inside plants, long before the appearance of visible-injury symptoms (1-4). One of the most notable effects of SO<sub>2</sub>, along with other pollutants like NO<sub>x</sub> and  $O_{3}$  is the excessive generation of free radicals, which in turn induces acute oxidative stress. The ROS (Reactive Oxygen Species) like H<sub>2</sub>O<sub>2</sub>, OH and O<sub>2</sub> cause serious damage to the cell constituents (see 5). Plants possess enzymatic as well as non-enzymatic various detoxification mechanisms to counter SO<sub>2</sub> -induced biochemical alterations. Among the enzymatic protectors, superoxide dismutases (SOD) and (POD) are the most notable ones peroxidases functioning against oxidative stress (see 6-8). Ascorbic acid also constitutes the first line of defense against SO<sub>2</sub> induced stress (9). In our earlier communication, activity of peroxidases as an indicator of SO2 -tolerance has been reported (8). Higher peroxidase activities in all the three plant species investigated may be interpreted as an indication of the participation of these enzymes as effective scavengers of toxic ROS (7-11). Studies on a variety of higher and lower plants suggest that peroxidases may serve as a good indicator of the distribution of gaseous pollutants in the vicinity of large

metropolitan cities with a higher level of SO<sub>2</sub>, HF and  $O_3$  (7,10-19).

Peroxidases are known to exist in multiple molecular forms (20). The multiple gene loci and their dependent isoforms may well provide means for adaptation of metabolic patterns to the changing needs of different tissues and organs in the course of normal development, in response to environmental alterations(see 21-23).In the present study, various isozymes of peroxidases were investigated . The electrophoretic pattern of peroxidase isoenzymes in SO<sub>2</sub> -fumigated plants provides additional useful information to detect biochemical alterations caused by this phytotoxicant, thereby helping in screening of SO<sub>2</sub> sensitivity.

### **II. METHODS AND MATERIAL**

Three economically important cultivated plant species viz., *Vigna radiata* (L.) Wilczek [Mung bean],*Solanum esculentum*(= *Lycopersicon esculentum* Mill.) [Tomato], and *Zea mays* L. [Maize] were grown from seeds in the nursery. Fifteen-day-old seedlings of these plants were subjected to different SO<sub>2</sub> treatments through an artificial fumigation system. Sulfur dioxide was generated from an aqueous solution of Na<sub>2</sub>S<sub>2</sub>O<sub>5</sub> and

circulated over the plants kept in specially designed closed-top fumigation chambers  $(1 \times 1 \times 1m = 1m^3)$  at temperatures ranging between  $25-29^{0}C \pm 1^{0}C$  and at a RH of  $60 \pm 5\%$ . Two 200W metal halide lamps were used for illumination with a light/dark cycle of 12/12 h.

### A. Treatment Protocols of SO<sub>2</sub>

Artificial fumigations were carried out according to the following protocols: T-1 = 0.05 ppm (134.0µg m<sup>-3</sup> SO<sub>2</sub>) [x 4h], T-2 = 0.1 ppm (268.0 µg m<sup>-3</sup> SO<sub>2</sub>) [x 2h] and T-3 = 0.2 ppm(536.0 µg m<sup>-3</sup> SO<sub>2</sub>) [x 1h] for 60 days, thus keeping the SO<sub>2</sub> dose constant. *V. radiata* was fumigated for only 45 days. Controls (C) were maintained simultaneously by exposing the plants to air alone.

# **B.** Extraction and Determination of Peroxidase Activity



**Figures 1-2**. Peroxidase Isozyme Profiles in SO<sub>2</sub>fumigated *S.esculentum* 

Peroxidases (POD: EC 1.11. 1. 7) were extracted and their activity was determined by the method outlined by Gasper et al.(22). The entire methodology is detailed in our earlier communication (7).

### C. Separation of POD Isozymes

Isoforms of peroxidases were separated using polyacrylamide gel electrophoresis (PAGE) technique according to the procedure outlined by Davis (24). Trisglycine buffer (pH 8.3) was used as a running buffer. After electrophoresis the isozymes were visualized by the method suggested by Mitra et al.(25). The gels were first immersed in 2.4x  $10^{-4}$ M benzidine containing 7x10<sup>-3</sup>M (v/v) acetic acid solution for 15 minutes in dark. Thereafter, the gels were transferred to  $3x10^{-2}$ M H<sub>2</sub>O<sub>2</sub> solution maintained in dark for another 5 min. Intense blue isozyme bands appeared which later turned brown. Gels were immediately washed and stored in 7% acetic acid at 25<sup>o</sup>C. The gels were later photographed.



 Table 1. Effect of SO2 treatments on peroxidase isozymes



**Figures 3-4.** Peroxidase Isozyme Profiles in SO<sub>2</sub>fumigated *V.radiata* 



Table 2. Effect of SO<sub>2</sub> treatments on peroxidase isozymes



**Figures 5-6.** Peroxidase Isozyme Profiles in SO<sub>2</sub>fumigated *Z.mays* 



 Table 3. Effect of SO2 treatments on peroxidase isozymes

### **III. OBSERVATIONS**

Number, intensity and width of isozyme bands were taken as a measure of peroxidase activity. Control plants of S.esculentum exhibited two isozyme bands till they were 45-day old (Figs 1a, 1e). Thereafter, the number of isobands increased to 3 and 4 in 60 and 75-day old plants respectively(Table 1;Figs 2 a, 2e).All the three SO<sub>2</sub> treatments resulted in change in isozyme profiles of peroxidases. In T-1 the number of isozyme bands increased to three only after 30 days of SO<sub>2</sub> fumigation (Fig 1f),and increased further to 5 bands each after 45 and 60 days of fumigation respectively (Figs 2b, 2f). In treatment T-2, there was a progressive change in isoperoxide zymogram showing 5 bands in all plants following 15, 30, 45and 60 days of SO<sub>2</sub> - fumigation respectively (Table 1; Figs 1c,1g,2c, 2g). The number of isozyme bands increased to 6 progressively increasing

periods of  $SO_2$  - fumigation (Figs 1d,1h ,2d, 2h).In addition to increase in number, there was also an increment in width and relative intensity of bands.

In *V.radiata*, two multiple forms of peroxidases were observed in 30 - 45 day control plants (Table 2; Figs 3a, 3e). There was an additional band in 60-day old plants (Fig 4a). All three SO<sub>2</sub> – treatments in T-1 showed an increase in the number of isoperoxidase forms. The number of multiple forms after 15 days of SO<sub>2</sub> – fumigation was 4 (Fig 3b) and this increased to 6 after 30-45 days of SO<sub>2</sub> - treatment respectively (Figs 3f, 4b).A similar pattern of the number of bands(6) was seen after 30 and 45 days of SO<sub>2</sub> – fumigation in T-2 (Figs 3g , 4c).There was, however, a progressive increase in the number of multiple forms of peroxidases in T-3. Peroxidase isoenzyme profile showed 6, 9 and 10 isobands after 15,30 and 45 days of SO<sub>2</sub> – fumigation respectively (Figs 3d,3h, 4d).

Thirty-day old control plants of Z.mays had 5 isoperoxide bands(Table 3; Fig 5a), which also remained the same in 45-day old plants (Fig 5d) and increased to 6 and 7 in 60 and 75-day plants respectively (Figs 6a and 6d).Not much significant change in isoperoxide zymogram occurred in plants after treatments T-2 and T-3. Whereas the number of bands increased from an initial 5 to 6, 7 and 8 after 15, 30 and 45 days of fumigation respectively (Figs 5b,5e and 6b).No new isozymic form was induced after 60 days as the number of bands remained at 8 (Fig. 6e).Number of isoforms increased to 7 after 15 days of SO<sub>2</sub>-fumigation in T-3 (Fig. 5c). Eight anionic bands were observed after 30 days (Fig.5f) and the number of bands after 45 and 60 days of SO<sub>2</sub>-fumigation was 9 (Table 3; Figs 6c, 6f).

#### **IV. DISCUSSION**

Peroxidases are known to catalyse the  $H_2O_2$ -dependent oxidation of a number of substrates, and exist in a number of multiple molecular forms (20, 26). SO<sub>2</sub>induced changes in POD may also be reflected as alterations in the activities of specific isozymes. The distribution and characteristics of these isoforms, which are not under genetic control, may be indicative of the needs of the developing tissue under SO<sub>2</sub> –stress. Since genetic variability increases with age, so does the pattern of scavenger enzymes like SOD and POD. In the present investigations, those plants having few isozymic forms developed entirely different band patterns which could be well designated as induced isozymes. In S. esculentum, the control plants of all ages (viz., 40, 45, 60 and 75 days) exhibited only 2,3 and 4 isozyme bands respectively as compared to the SO<sub>2</sub>fumigated plants, which showed additional isoforms for the same respective ages. This alteration in isozyme profile can be ascribed to the *de novo* synthesis of POD as anionic bands 5 and 6, which never appeared in the control plants during their entire life span. In the relatively SO<sub>2</sub>-tolerant species V. radiata and Z. mays, SO<sub>2</sub> perhaps does not act as an inducer of new isozymes as similar Rf values were located in comparatively older control plants. It is therefore, apparent that SO<sub>2</sub>-stress simply advanced the appearance of those isozymes which were yet to appear in the control plants. Resistance to SO<sub>2</sub> is thus a function of the number of isoenzymes of POD ab initio. A similar trend is also observed for SOD (see 6). More isozymic forms would mean greater resistance, as is clearly documented in Z.mays. Number of POD isozymes is 5-6 and 7 respectively in control plants of progressively increasing ages. This number remained fairly constant throughout the life span. Consequently maize is able to resist SO<sub>2</sub>stress more successfully. Biochemical studies on peroxidases corroborate this viewpoint (7).Similar pattern of SO<sub>2</sub>-induced POD isozyme profile has been reported in Vigna sinensis and Capsicum (27), in pollen of Argemone mexicana (16), and also in sunflower cotyledons exposed to UV-B radiations (20), as well as in low level  $O_3$ - exposed bean leaves (28).

### V.CONCLUSION

Electrophoretic patterns of POD isozymograms are a useful diagnostic tool for detecting certain biochemical alterations occurring in a plant in response to air pollutants, thereby assisting in their usage as reliable biochemical markers of stress tolerance.

### **VI. REFERENCES**

 Chauhan A., 1989a. Effect of Sulphur Dioxide on Plants at Biochemical and Physiological Levels. PhD. Thesis, University of Garhwal, India. P. 297.

- Tripathi A.K. and Gautam M. 2007. Biochemical parameters of plants as indicators of air pollution. J.Environ Biol. 28(1): 127-132.
- [3] Rai R., Rajput M., Agrawal M. and Agrawal S.B. 2011. Gaseous air pollutants: A review on current and future trends of emissions and impact on agriculture. J.Sci.Res. BHU, Varanasi. 55:77-102.
- [4] Singh L.P., Gill S.S., Gill R. and Tuteja N. 2012. Mechanism of sulphur dioxide toxicity and tolerance in crop plants. In: Improving Crop Resistance to Abiotic Stress. Eds. Tuteja N., Tiburci A.F., Gill S.S. and Tuteja R. (pp. 133-163). Wiley VCH Verlag GmBh & KgaA, Berlin.
- [5] Arora A., Sairam R.K. and Srivastava G.C. 2002. Oxidative stress and antioxidative systems in plants. Curr. Sci. 82: 1227–1238.
- [6] Chauhan A. 1989b. Superoxide dismutase—a bioindicator of plant response to SO2-stress. In : Plants and pollutants in developed and developing countries . Ed Öztürk M.A. (pp 549-568). Ege University, Izmir, Turkey.
- [7] Chauhan A. 2015. Peroxidase Activity as an Indicator of SO2- Tolerance in Crop Plants . Int.J.Innov.Res &Dev. 4: 45-50.
- [8] Jokinen J., Karjalainen R., Saynatkari T., Hakkinen A. and Markkanen K. 1983.Effects of air pollution on scots pine needles. I. Effects on total peroxidase activity. Silva Fennica 17(3): 279-287.
- [9] Chauhan A. 2015d. Effect of SO2 on ascorbic acid content in crop plants—First line of defense against oxidative stress. Int. J. Innov. Res. & Dev. 4(11): 8-13.
- [10] Kim Y., Lim S., Han S., Lee J., Song W., Bang J., Kwon S., Lee H. and Kwak S. 2007. Differential expression of 10 sweet potato peroxidases in response to sulfur dioxide, ozone, and ultraviolet radiation. Plant Physiol. Biochem. 45: 908-914.
- [11] Horsman, D.C. and Wellburn, A.R. (1976). Guide to the metabolic and biochemical effects of air pollutants on higher plants. In Mansfield T.A. (Ed.), Effects of air pollutants on plants (pp. 185-199). Cambridge: Cambridge University Press.
- [12] Bucher Wallin I. 1976. Zur Beeinflussung des physiologischen Blattalters von Waldbäumen durch Fluor-Immissionen. Mitt.Eidgen.Anst. For. Vers. Schweiz. 52: 101-158.

- [13] Keller T., Schwager H. and Yee-Meiler D. 1976. Der Nachweis Winterlich SO2 Immissionen an jungen Fichten: Einvergleich dreier Methoden. Eur. J. Pathol. 6: 244-249.
- [14] Varshney S.R.K. and Varshney C.K. 1985. Response of peroxidase to low levels of SO2. Environ.Exp.Bot. 25: 107-114.
- [15] Takahama U., Vekjovic-lovanovic S. and Heber U. 1992. Effects of air pollutant SO2 on leaves: inhibition of sulfite oxidation in the apolast by ascorbate and of apoplastic peroxidase by sulfite. Plant Physiol. 100: 261-266.
- [16] Parui S., Mondal A.K. and Mandal, S. 2001. DNA, peroxidase profile, and biochemical composition changes during the treatment in vitro of pollen of Argemone mexicana L. with SO2. Grana 40: 154-158.
- [17] Li L. and Yi H. 2012. Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants. Plant Physiol. Biochem. 58: 46-53.
- [18] Ali Ahmed M.S., Boumedris Z., Tahar A. and Djebar M.R. 2016. Impact of an atmosphere rich in sulfur dioxide on a foliose lichen species Flavoparmelia caperata (L) Hale from the El Kala National Park (Northeast Algerian). Int. J. Innov. Res. Dev. 2(1): 21-27.
- [19] Li Z.G., Wu Y.M., Liu Y. and Yu S.W. 1981. Studies on the response and resistance of plants to sulphur dioxide. Effects of SO2 fumigation on peroxidase of wheat leaves. Acta Phytophysiol. Sinica 7: 363-371.
- [20] Yannarelli G.G., Gallego S.M. and Tomaro M.L. 2006. Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons. Environ.Exp. Bot. 56: 174-181.
- [21] Moss D.W.1982. Isoenzymes. Chapman and Hall, London and New York.
- [22] Gasper T., Panel C., Hagege D. and Greppin H. 1991.Peroxidases in plant growth, differentiation and developmental processes. In Biochemical, Molecular and Physiological Aspects of Plant Peroxidases. J. Lobarzewsky, H. Greppin, C. Penel and T. Gaspar Eds. University M. Curie-Sklodowska, Poland and University of Geneva, Switzerland, p 249-280.

- [23] Ianculescu M. and Budu C.E. 2008. Detecton of resistant individuals to SO2 pollution by using peroxidase activity regulated by a glycoprotein in sessile oak seedlings (Quercus petraea (Matt.) Liebl. Forest Science Proc. Rom. Acad. Series B. 1-2: 101-107.
- [24] Davis B.J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Ann.N.Y.Acad.Sci. 121: 404-427.
- [25] Mitra, R., Jagannath D.R. and Bhatia, C. 1970. Disc electrophoresis of analogous enzymes in Hordeum. Phytochemistry 2: 1843-1850.
- [26] Liu E.H. 1975. Substrate specificities of plant peroxidase isozymes. In: Isozymes II. Physiological Function (Ed. C.L. Markert). Academic Press, New York. Pp837-849.
- [27] Fhu Z., Xiaofeng Y. and Jingyang Z. 1994. Effects of simulated acid rain on the injury and physiological responses of crops. J. Environ.Sci. 6(1): 87-92.uz
- [28] Curtis C.R. and Howell R.K. 1971. Increases in peroxidase isoenzyme activity in bean leaves exposed to low doses of ozone, Phytopathology 61: 1306-1307.